По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4) 


А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)

___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
24,5 (км/час) - скорость катера в стоячей воде
3,5 (км/час) - скорость течения реки
Объяснение:
х - скорость катера
у - скорость течения
х+у - скорость катера по течению
х-у - скорость катера против течения
По условию задачи по течению катер шёл 3 часа, против течения 4 часа, система уравнений:
х+у=28
(х+у)*3=(х-у)*4
Преобразуем второе уравнение:
(х+у)*3=(х-у)*4=
=3х+3у=4х-4у=
=3х-4х+3у+4у=
= -х+7у
В первом уравнении выразим х через у и полученное выражение подставим во новое второе уравнение:
х=(28-у)
- (28-у)+7у
-28+у+7у
8у=28
у=3,5 (км/час) - скорость течения реки
х=28-3,5=24,5 (км/час) - скорость катера в стоячей воде
Проверка:
(24,5+3,5)*3= 84 (км) проплыл катер по течению
(24,5-3,5)*4= 84 (км) - проплыл катер против течения (обратно). Всё верно.
1.
2.D=225-4*3*(-198)=2601=
3.x₁=
x₁=11 x₂=-6
1.
2.D=484-4*8*(-6) D=676=
3.x₁=
1.
2.D=
3.x₁=