Пусть скорость течения реки (х) км/час собственная скорость лодки (у) км/час ---это и скорость в стоячей воде))) тогда скорость ПО течению будет (у+х) км/час скорость ПРОТИВ течения будет (у-х) км/час t = S / v время = путь / скорость на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов))) (54 / (у+х)) + (48/у) = 6 (64/у) - (36/(у+х)) = 2 система 48х + 102у = 6*у*(х+у) 64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у) 32х + 14у = у*(х+у)
8х + 17у = 32х + 14у 24х = 3у у = 8х
8х + 17*8х = 8х*(х+8х) 18х = 9х² 2х = х² х² - 2х = 0 х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла))) х = 2 (км/час) ---скорость течения реки у = 8х = 16 (км/час) собственная скорость лодки ПРОВЕРКА: (54 / 18) + (48 / 16) = 3+3 = 8 часов))) 64 / 16 = 4 часа в стоячей воде двигалась лодка 36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
Сначала всё обозначим. Расстояние = х. Первоначальная скорость 50 км/час. Увеличенная скорость 60 км/час. Тогда время, затраченное на первую половину пути, будет х/2 : 50, а время второй половины пути х/2 : 60. Разница между ними 12 минут, или 1/5 часа. Получаем уравнение x/2 : 50 - x/2 : 60 = 1/5. Находим общий знаменатель, приводим подобные, получаем простое уравнение 1,2х - х = 24, отсюда х = 120 (км). Это расстояние между станциями. Проверка: 60 (половина пути) : 50 = 1 и 1/5 часа. Вторая половина расстояния 60 : 60 = 1 час. Разница 1/5 часа, или 12 минут, как в условии.
cos85=cos(90-5)=sin5
-cos55cos5+sin55sin5=-(cos55cos5-sin55sin5)=-(cos60)=-1/2