Во-первых, нужно построить фигуру, заданную исходными уравнениями, в декартовых координатах, а затем воспользовавшись интегралом, найти ее площадь. Поясняю: у=х*2 + 1 - это парабола, ветви которой направлены вверх и смещенная по оси у на 1 единицу вверх; х=1 - это прямая, параллельная оси у и проходящая через точку (1;0); х=4 - это прямая, проходящая черезточку (4;0); у=0 - это прямая, параллельная оси х, проходящая через точку (0;0), точнее это ось х и есть. Жаль нарисовать не могу, попытаюсь описать словами: значит, проводим оси х и у; строим параболу(ее вершина будет в точке(0;1), ветви идут вверх, остальные точки не имеют значения, проводит параболу произвольно, здесь главное вершина); строим прямую х=1(т.е. через точку (1;0) проводим прямую, параллельную оси у; строим прямую х=4(через точку(4;0) проводим прямую, параллельную оси у); строим прямую у=0 - это ось х и есть; на чертеже находим фигуру, которая образована всеми 3-мя графиками прямых и графиком параболы; после этого находим ее границы по оси х( в нашем случае фигура лежит в пределах от 1 до 4); теперь берем интеграл от той ф-ции, которая даст нам площадь фигуры, а по геометрическому определению интеграл - это площадь фигуры, лежащей под графиком ф-ции; в нашем случае, такой ф-цией является уравнение параболы. Значит берем нтеграл от выражения у=х*2 + 1 в пределах от 1 до 4(т.е нижней границей интегрирования является1, а верхней-4) В итоге получим, что площадь равна 24 кв.ед. Ниже прилагаю рисунок
Пусть х кг - масса первого раствора, а у кг- масса второго.По условию задачи масса смеси равна 50 кг.Составляем первое упавнение: х+у=500,25х +0,4у=0,34*50 - второе уравнение. Решаем систему: х+у=50 0,25х +0,4у=0,34*50 х= 50-у 0,25(50-у) +0,4у = 17 12,5 -0,25у +0,4у =17 0,15у = 4,5 у = 30 (кг) - масса второго раствора х = 50-30=20 (кг) - масса первого раствора ответ: 20 кг, 30 кг.
1. Начнем решать задачу "от противного". Если во второй день работы израсходовали от того, что осталось после первого деня, то после второго дня работы осталась от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно =2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12. ответ: всего было куплено 12 банок с краской.
Поясняю:
у=х*2 + 1 - это парабола, ветви которой направлены вверх и смещенная по оси у на 1 единицу вверх; х=1 - это прямая, параллельная оси у и проходящая через точку (1;0); х=4 - это прямая, проходящая черезточку (4;0); у=0 - это прямая, параллельная оси х, проходящая через точку (0;0), точнее это ось х и есть.
Жаль нарисовать не могу, попытаюсь описать словами:
значит, проводим оси х и у; строим параболу(ее вершина будет в точке(0;1), ветви идут вверх, остальные точки не имеют значения, проводит параболу произвольно, здесь главное вершина); строим прямую х=1(т.е. через точку (1;0) проводим прямую, параллельную оси у; строим прямую х=4(через точку(4;0) проводим прямую, параллельную оси у); строим прямую у=0 - это ось х и есть; на чертеже находим фигуру, которая образована всеми 3-мя графиками прямых и графиком параболы; после этого находим ее границы по оси х( в нашем случае фигура лежит в пределах от 1 до 4); теперь берем интеграл от той ф-ции, которая даст нам площадь фигуры, а по геометрическому определению интеграл - это площадь фигуры, лежащей под графиком ф-ции; в нашем случае, такой ф-цией является уравнение параболы. Значит берем нтеграл от выражения у=х*2 + 1 в пределах от 1 до 4(т.е нижней границей интегрирования является1, а верхней-4)
В итоге получим, что площадь равна 24 кв.ед.
Ниже прилагаю рисунок