Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов.
Имеем уравнение:
15/x+4/(x-4)=1
15*(x-4)+4*x=x*(x-4)
15*x-60+4*x=x^2-4*x
Имеем квадратное уравнение:
x^2-23*x+60=0 Д=(-23)^-4*1*60=289
x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2
x1=20 (км/час)
x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения.
Проверка:
15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи
ответ: Скорость катера по течению равна 20 км/x
Объяснение:
Пусть a₁; a₁+d; a₁+2d арифметическая прогрессия
a₁ + a₁+d + a₁+2d = 15
3a₁ +3d =15
a₁ + d = 5
a₁ = 5 - d
тогда
a₁+1; a₁+d+1; a₁+2d+4 геометрическая прогрессия
по характеристическому свойству
геометрической прогрессии
(a₁ + d + 1)² = (a₁ + 1)(a₁ + 2d + 4)
(5 - d + d + 1)² = (5 - d + 1)(5 - d + 2d + 4)
6² = (6 - d)(d + 9)
36 = 6d - d² + 54 - 9d
d² + 3d - 18 = 0
D=b²-4ac
D=9+4·18 = 81
возможны два варианта ответа
1) d=(-3 - 9)/2 = -6
a₁ = 5 -(-6)=11
a₁+d =11 - 6= 5
a₁+2d = 11 -12= -1
искомые числа : 11; 5; -1 арифметическая прогрессия
12; 6; 3 геометрическая прогрессия
2) d=(-3 + 9)/2 = 3
a₁ = 5 - 3 = 2
a₁+d = 2 +3 = 5
a₁+2d = 2 + 6 = 8
искомые числа : 2; 5; 8 арифметическая прогрессия
3; 6 ;12 геометрическая прогрессия
О т в е т:
11; 5; -1 или 2; 5; 8
при х=1,8, у=16,7
(1.8+0.2)(16.7-2.7)=1.6*14=22.4