S=tv+tu
S=3*80+3*60
S=240+180
S=420км
Так как учитель сам выбирает работы, то пусть все, не выбранные изначально работы, будут оценены на 2. Таким образом, работ на 2 уже имеется 100-40=60 штук.
Рассмотрим 40 работ, которые выбрал учитель и передал старосте. Так как староста выбирает 10 работ произвольным образом, то среди любых 10 работ должны находиться хотя бы 4, написанные на 5. Значит, максимальное количество работ на 2, которые могут попасть в выбор старосты, равно 10-4=6, а значит максимальное количество работ на 2, которые вообще могут попасть к старосте, также равно 6.
Итак, наибольшее количество двоек складывается из 60 двоек среди невыбранных работ и 6 двоек среди работ у старосты.
Значит, наибольшее количество двоек равно 60+6=66.
ответ: 66
Для начала надо найти координаты вектора, перпендикулярного искомой плоскости. Таковым является векторное произведение заданных векторов:
I j k| I j
2 0 1| 2 0
1 1 0| 1 1 = 0i + 1j + 2k – 0j – 1i – 0k = -1i + 1j + 2k.
Координаты нормального вектора (-1; 1; 2).
В уравнении плоскости Ax + By + Cz + D = 0 вектор (A; B; C) является вектором, перпендикулярным заданной плоскости. Поэтому искомое уравнение имеет вид:
-1x + 1y + 2z + D = 0.
Остается найти свободный коэффициент D - его найдем из условия, что плоскость проходит через точку А(0;1;2). Подставляем значения в уравнение:
0 + 1*1 + 2*2 + D = 0, отсюда D = -5.
ответ: уравнение –x + y + 2z - 5 = 0.
расстояниеS=сумма скоростей(U+V)*время до встречи (t)
при заданных значениях имеем
S=(80+60)*3=140*3=420 км