Объяснение:
1) 10+7x>24 7x=24-10 7x>14 |÷7 x>2 ⇒
Наименьшее натуральное число: 3.
2) 19-6x<-5 6x>19+5 6x>24 |÷6 x>4 ⇒
Наименьшее натуральное число: 5.
3) -43x+2≤45 43x≥-45+2 43x≥-43 |÷43 x≥-1 ⇒
Наименьшее натуральное число: -1.
4) 60+17x>-19 17x>-19-60 17x>-79 |÷17 x>-4¹¹/₇₉ ⇒
Наименьшее натуральное число: -4.
5) 83+x<84x 84x-x>83 83x>83 |÷83 x>1 ⇒
Наименьшее натуральное число: 2.
-7-30x≤5x 5x+30x≥-7 35x≥7 |÷35 x≥1/5 ⇒
Наименьшее натуральное число: 1.
Пусть х-скорость первого пешехода,тогда х-1 - скорость второго пешехода. ТАк как путь и того и другого равен 5 км/ч,тогда скорость первого пешехода 5/x, а второго 5/x-1. Ещ нам известно,что второму понадобилось на 15 минут больше чем первому. ПОэтому составим уравнение:
5/x-1 - 5/x=15
x(x-1)
домножим каждую дробь на недостающий множитель,получим:
5х-5х+5-15х^2-15х=-15х^2-15х+5---это числитель
х^2-хзнаменатель,он должен быть не равен 0(так как знаменатель отличен от нуля)значит х не равен 0 и не равен 1
а числитель равен о
-15х^2 -15х +5=0 разделим обе части на - 5
3х^2+3х-1=0
находим дискриминант 9+12=21
2) 1
3) 1