Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81. Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649 Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.: Начинающееся на 3: 3649 на 4: 49 на 5 - таких чисел нет на 6: 649 на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7. на 8: - 81649 на 9: - нет. Итак, наибольшее: 81649.
План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке 4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума. начали? 1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)² 2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0 -2х² - 4х -3 +х² = 0 -х² -4х -3 = 0 х² + 4х + 3 = 0 х1 = -1; х2 = -3 3) -∞ + -3 - -1 + +∞ 4) функция возрастает при х∈( -∞; -3)∨(-1; +∞) функция убывает при х ∈(-3; -1) х = -3 точка мак4симума х = -1 точка минимума.
подставляем числа вместо букв и получаем 15 - 3/15 +3=15-1/5+3=75/5-1/5+15/5=(75-1+15)/5=17,8
Если же в условии ты имеешь в виду (m-k)/(m+k), что скорее всего, то так же подставляем числа вместо букв (15-3)/(15+3)=12/18=2/3