Общий ход построения данных графиков: График - прямая, для построения требуется две точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу (для каждого графика свою, приведена ниже): Х= У= Отмечаем точки в системе координат, проводим через них прямую. Подписываем график. Всё! Итак, начнём:
у=-4х - прямая, проходящая через начало координат , поэтому достаточно ещё одной точки, например х=1, у= -4 , ставим точку (1;-4) и проводим прямую через эту точку и начало координат.
Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
=3*sgrt2*cos(5pi/4)=3sgrt2*(-sgrt2/2)= -3 /В скобках получается косинус двойного угла