( x + 2xy ) * ( 2x - 1 )
x-y x^2-2xy+y^2 x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2)* ( 2x - 1 )
(x-y) (x^2-2xy+y^2 ) x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
(x^3-xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x(x^2-y^2)*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x((x-y)(x+y)))*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x*(2x - 1 )
(x^2-2xy+y^2 )
x*(2x - 1 )
(x-y)^2
подставляем
-2(-4-1) = 10
9 9
Отметь как лучший,буду рад!
1)Множество целых чисел Z включает в себя число 0, множество натуральных чисел и отрицательные числа .
2) Множество рациональных чисел Q включает в себя множество целых чисел Z и все дробные числа.
3) Вместо фразы m – целое число можно писать Z .
4) Вместо фразы r– рациональное число можно писать Q.
5) N – множество натуральных чисел множества Z , Z – множество целых чисел множества Q.
6) Повторяющая группа цифр после запятой в записи десятичной дроби называется периодом, а сама дробь называется периодической.
7) Множество Q рациональных чисел - это множество чисел вида m/n ,
где - m целое число, n – натуральное число , или как множество обыкновенных дробей.
Объяснение:
1) A=9*x+1
2) A=9*x+8
Возведём в квадрат оба случая:
1) A^2 = (9x+1)^2 = 81*x^2 + 2*9*x + 1 = 81*x^2 + 18*x + 1
2) A^2 = (9x+8)^2 = 81*x^2 + 2*8*9*x+64 = 81*x^2 + 144*x+64
Теперь преобразуем эти записи так, чтобы увидеть, какая часть из них делится на 9, а какая нет:
1) 81*x^2 + 18*x + 1 = 9*(9*x^2+2*x) + 1
2) 81*x^2 + 144*x+ 64 = 9*(9*x^2+16*x)+63 +1 = 9*(9*x^2+16*x+7) +1
Мы видим, что в обоих случаях квадрат записывается в виде 9*выражение+1 = а значит, остаток от деления квадрата на 9 будет равен 1.