1)Решение системы неравенств [-2, (-1+√73)/4]
2)Решение системы неравенств х∈(0,2, 1)
Объяснение:
1. Решите систему неравенств:
3х+4≤4х+6
х-5≤4-2х²
Во втором неравенстве перенесём все члены уравнения в левую часть, приравняем к нулю и решим, как квадратное уравнение:
х-5-4+2х²≤0
2х²+х-9=0
х₁,₂=(-1±√1+72)/4
х₁,₂=(-1±√73)/4
х₁=(-1-√73)/4 ≈ -9,5
х₂=(-1+√73)/4 ≈ 7,5
Начертим СХЕМУ параболы, которую обозначает данное уравнение (ничего вычислять не надо). Просто начертим схематично оси, параболу с ветвями вверх, и отметим на оси Ох точки х₁ ≈ -9,5 и
х₂ ≈ 7,5. Ясно видно, что у<0 при х от -9,5 до 7,5, то есть,
решение второго неравенства х∈[(-1-√73)/4, (-1+√73)/4]
Решим первое неравенство.
3х+4≤4х+6
3х-4х ≤6-4
-х ≤2
х -2 знак меняется
Решение первого неравенства х∈[-2, ∞).
Отметим на числовой оси решение первого неравенства и решение второго, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому, и второму неравенству.
Решение системы неравенств [-2, (-1+√73)/4] х от -2 до 7,5.
Неравенства нестрогие, скобки квадратные.
2. Решите двойное неравенство -3<2-5х<1
Решается как система:
2-5х>-3
2-5х<1
-5х> -3-2
-5x<1-2
-5x> -5
-5x< -1
x<1 знак меняется x ∈(-∞, 1) решение 1-го неравенства
x>0,2 знак меняется x ∈(0,2, ∞) решение 2-го неравенства
Отметим на числовой оси решение первого неравенства и решение второго, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому, и второму неравенству.
Решение системы неравенств х∈(0,2, 1)
Неравенства строгие, скобки круглые.
1. Пусть х-количество 2-х местных байдарок,
тогда 12-х -количество 3-х местных байдарок.
В двухместных байдарках разместилось 2х человек,
а в трёхместных 3(12-х) человек.
По условию задачи всего было 29 человек.
Составляем уравнение:
2х+3(12-х)=29
2х+36-3х=29
-х=29-36
-х=-7
х=7- было 2-х местных байдарок
2.Запишите уравнение прямой, паралельной данной прямой и проходящей через данную точку А: 3х+4у=12, А (8;-8)
3х+4у=12
4у=12-3х
у=3-3/4 х
k=-3/4
у=kx+b
A(8;-8)
-8=-3/4*8+b
b=-8+12=4
y=-3/4x+4 -уравнение прямой, паралельной данной прямой и проходящей через данную точку А.
3.Запишите уравнение прямой, которая проходит через две данные точки: А (1;3), В (5;-4)
вектор АВ(5-1;-4-3)=(4;-7)
(х-1)/4 = (у-3)/-7
-7х+7=4у-12
7х+4у-19=0 - искомое уравнение прямой
примеси в металле=той же руде=8*0,05=0,4 тн
всго руды осталось (или примесей)
20-8+0,4=12,4 тн
20 -100
12,4 -х
х=12,4*100/20=62%