Стороны прямоугольника равны 6 см и 10 см.
Объяснение:
Пусть одна сторона прямоугольника равна х см,
тогда другая сторона прямоугольника равна (х+4) см.
По условию задачи, площадь прямоугольника равна 60 см².
Составим и решим уравнение:
х(х+4)=60
х²+4х-60=0
D = 4²-4*1*(-60)= 16+240 = 256 =16²
x₁=(-4+16)/2 = 12/2 = 6
x₂=(-4-16)/2 = -20/2 =-10 <0 - данный корень не является решением задачи, т.к. сторона прямоугольника не может быть отрицательным числом.
Итак, х=6 см - одна сторона прямоугольника
х+4=6+4=10 (см ) - другая сторона прямоугольника.
Точка минимума -8
Объяснение:
Чтобы найти точку минимума мы сначало приравняем производную этой функции на ноль и находим критические точки:
y'=((x+8)^2*e^x)'-(3)'=((x+8)^2)'*e^x+(e^x)'*(x+8)^2; используя таблицу формул производных получим e^x(x^2+18x+80)=0, так как e^x всегда положительна можем разделить уравнение на е^x, получим окончательный вид уравнения х^2+18x+80=0, а это квадратное уравнение; решив это уравнение получим корни x1=-10 и x2=--8;
эти точки расчитываем на интервале и узнав положительность и отрицательность интервала; и получим +.-.+ где минимумом функции является точка в интервале -.+; а это точка -8.