М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Нюша1390
Нюша1390
14.01.2022 21:52 •  Алгебра

Представьте в виде произведения 2х³ + х² - 2х - 1

👇
Ответ:
Саша77777777
Саша77777777
14.01.2022
2х³ + х² - 2х - 1=2x(x^2-1)+(x^2-1)=(x-1)(x+1)(2x+1)
4,6(43 оценок)
Ответ:
morozandrey7474
morozandrey7474
14.01.2022
Нужно приравнять к нулю и найти корни. Тогда произведение будет таким:
многочлен = (х - первый корень) *(х - второй корень) *(х- третий корень) *...и так далее, смотря сколько корней
ПРИМЕР: х2-+х -6= 0
здесь корни такие: х= 2 и х=-3.
Тогда произведение будет таким: (х - 2)*(х+3)
4,7(76 оценок)
Открыть все ответы
Ответ:
anastasiakhrul
anastasiakhrul
14.01.2022
1) 1) найдите значение производной функции  y=cosx-2sinx в точке Xo =3π/2. 
 y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) =  - sin(3π/2) -2cos(3π/2)  = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3 
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5  =  3(x +5/3)(x -1) .
y '      +                                     -                         +   
- 5/3 max  1  min

3 )Решите уравнение  -2sin²x-cosx+1=0
 Укажите корни, принадлежащие отрезку          П    ?            

-2sin²x-cosx+1=0 ;  x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
 
производим замену переменной  t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.

[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k  , k∈Z .

ответ :   2π/3 .
4,5(63 оценок)
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ