Дано: ABC - равнобедренный треугольник; AC = 12 см; AD = 9.6 см; AB=BC.
Найти: Рabc.
Из прямоугольного треугольника ADC по теореме Пифагора найдем CD
см.
Пусть , тогда
.
Рассмотрим прямоугольный треугольник BHC найдем высоту BH к стороне основания AC; AH=CH=AC/2=6 см.
Площадь равнобедренного треугольника равна , с другой стороны
Приравнивая площади, получим AD * BC = BH * AC.
После возведения в квадрат обе части уравнения и упрощений с подобными членами вы должны получить следующее квадратное уравнение
Корни которого: - не удовлетворяет условию
см
Тогда см
Pabc = AB + BC + AC = 10 + 10 + 12 = 32 см
ответ: 32 см.
Объяснение:
На 0 делить нельзя. Область определения: (-∞;0)∪(0;∞)
Т.к х не равен 0, то точек пересечения с осью у нет. Находим точки пересечения с осью х.
Решаем квадратное уравнение, находим точки пересечения с осью х:
Находим точки экстремума (производная равна нулю).
Для нахождения точек перегиба находим вторую производную
Вторая производная нигде не равна нулю, точек перегиба нет.
Горизонтальных асимптот нет. Вертикальная асимптота одна: х=0.
Ищем наклонную асимптоту:
Наклонная асимптота есть:
Дальнейшее исследование проводим, заполняя таблицу (см. рис.1).
1) (1+9)*(9-9)=0
2) 635%
х100%
х=63*100/5=1260га