1. Примем зарплату работника за x. Имеем: x * ((100 + 10) / 100) * ((100 + 20) / 100) = (110 * 120) / 10000 = 13200 / 10000 = 132 / 100 = (100 + 32) / 100, то есть зарплата повысилась на 32%. 2. Постройте пятиконечную звезду и расставьте яблони на каждом пересечении её граней. 3. В январе 31 день, то есть 4 недели и три дня. Если в январе четыре пятницы и четыре понедельника, то оставшиеся 3 дня не могут быть ни пятницей, ни понедельником. Такое возможно, если месяц начался со вторника. 4. Из условия задачи имеем: Пётр не из 4 - го, не из 5 - го и не из 7 - го класса, значит он из 6 - го. Николай не из 6 - го, не из 7 - го и не из 5 - го класса, значит он из 4 - го. Вася не из 5 - го, не из 6 - го и не из 4 - го, значит он из 7 - го. Степан не из 4 - го, не из 6 - го и не из 7 - го, значит он из 4 - го. 5. Весь отрезок 50 сантиметров. Вычтем из этого 30 и найдём, что сумма половин крайних отрезков равна 20. Вычтем данное число из 30: 30 - 20 = 10 и разделим пополам: 10 / 2 = 5 - искомое расстояние.
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)