Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные. Вертикальной асимптотой графика функции называется вертикальная прямая , если или при каком-либо из условий: , , . Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции , однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки: или , где .
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче