Пусть х км/ч скорость второго авто, тогда (х+20) км/ч скорость первого. Замечаем, что 2 ч 24 мин = 2,4 ч , составляем уравнение по времени в пути двух авто:
420 / х - 420 / (х+20) = 2,4
Приводим к общему знаменателю х(х+20) и
отбрасываем его, записав, что х не=0 и х не=-20
420(х+20)-420х=2,4х(х+20)
420х+8400-420х = 2,4x^2+48х
2,4x^2+48x- 8400 =0
x^2+20x-3500=0
D= 400+4*3500=14400, 2 корня
х(1)=(-20+120)/2 = 50 (км/ч ) скорость второго авто
х(2)= (-20-120)/2= -70 не подходит под усл задачи
50+20=70 км/ч скорость первого авто
Объяснение:
1) F(x) = √(4 - 5*x), Xo = 0
Y = F'(Xo)*(x - Xo) + F(Xo) - формула касательной.
Находим первую производную - k - наклон касательной.
F'(Xo) = F'(0) = - 5/4 = k
F(0) = 2
y = - 5/4*x + 2 - касательная - ответ.
Задача 2)
ДАНО:Y(x) = x³ -3*x² + 2
ИССЛЕДОВАНИЕ.
1. Область определения D(y) ∈ R, Х∈(-∞;+∞) - непрерывная , гладкая.
2. Вертикальная асимптота - нет - нет разрывов.
3. Наклонная асимптота - y = k*x+b.
k = lim(+∞) Y(x)/x = +∞ - нет наклонной (горизонтальной) асимптоты.
4. Периода - нет - не тригонометрическая функция.
5. Пересечение с осью OХ.
Применим теорему Безу. х₁ *х₂ *х₃ = 2
Применим тригонометрическую формулу Виета.
Разложим многочлен на множители. Y=(x+0,73)*(x-1)*(x-2,73)
Нули функции: Х₁ =-0,73, Х₂ =1, Х₃ =2,73
6. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;-0,73]U[1;2,73] Положительная -Y(x)>0 X∈[-0,73;1]U[2,73;+∞)
7. Пересечение с осью OY. Y(0) = 2
8. Исследование на чётность.
В полиноме есть и чётные и нечётные степени - функция общего вида.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
9. Первая производная. Y'(x) = 3*x² -6*x = 0
Корни Y'(x)=0. Х₄ =0 Х₅=2
Производная отрицательна между корнями - функция убывает.
10. Локальные экстремумы.
Максимум - Ymax(X₄= 0) =2. Минимум - Ymin(X₅ = 2) =-2
11. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;0;]U[2;+∞) , убывает - Х∈[0;2]
12. Вторая производная - Y"(x) = 6* x -6 = 0
Корень производной - точка перегиба Х₆=1
13. Выпуклая “горка» Х∈(-∞; Х₆ = 1]
Вогнутая – «ложка» Х∈[Х₆ = 1; +∞).
14. График в приложении.
Задача 3)
Ymin(0) = -3, Ymax(2) = 9 - ответ.
1) 123+375=498
2)212-129=83
3)498*24=11952
4)11952:83=144