Обозначим: x-первое число, y- второе число. 30% от первого числа x· 3/10, 40% от второго числа y·4/10, запишем уравнение: x·3/10+y·4/10=10. Во втором случае первое число увеличили на 10%, оно стало равно 110%, 110% от первого числа x·11/10, второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%, 80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными: x·3/10+y·4/10=10 ·10 x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2) 11x+8y=260
-6x-8y=-200 11x+8y= 260, складываем эти уравнения, 5x=60 x=12. найдем значение y. 3x+4y=100 4y=100-3x=100-3·12. 4y=64 y=16 ответ: первое число равно 12, второе равно 16
Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
5x-3=4x-4+1
x=0
6(х-1)+1=5х-3
6x-6+1=5x-3
x=2
3х-5=2(х+1)-3
3x-5=2x+2-3
x=4
2(х-3)+1х=х-4
2x-6+1x=x-4
2x=2
x=1