Корнем явл. любое число 0=0
ответ разместил: Гость
при m < n
объяснение:
чем больше степень корня, тем меньшее число мы получим при извлечении:
возьмём \sqrt[3]{3} и \sqrt[4]{4}.
1,44 > 1,41.
возьмём \sqrt[4]{4} и \sqrt[5]{5}
1,41 > 1,37
возьмём \sqrt[5]{5} и \sqrt[6]{6}
1,37 > 1,34
возьмём \sqrt[6]{6} и \sqrt[7]{7}
1,34 > 1,32.
это простенько
возьмём \sqrt[99]{99} и \sqrt[100]{100}\
1,04750 > 1,04712
возьмём совсем экстремальный пример \sqrt[999]{999} и \sqrt[1000]{1000}
1,006937 > 1,006931
Объяснение:
я старался
20(x²-6x-9)²=x(x²-4x-9)
(x²-6x-9)²-x(x²-4x-9)=0
(x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0
x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0
x⁴-13x³+22x²+117x+81=0
подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно
Значит х=-1 - корень данного уравнения
Делим x⁴-13x³+22x²+117x+81 на (х+1)
получим х³-14х²+36х+81
Итак,
x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81)
корни многочлена
х³-14х²+36х+81
следует искать среди делителей свободного коэффициента 81
Это числа ±1;±3;±9
Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0
х=9 - корень данного уравнения
х³-14х²+36х+81 делим на (х-9)
получим х²-5х-9
Осталось разложить на множители последнее выражение
х²-5х-9=0
D=25+36=61
x=(5-√61)/2 или х=(5+√61)/2
Окончательно
x⁴-13x³+22x²+117x+81=0 ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1 или х₂=9 или x₃=(5-√61)/2 или х₄=(5+√61)/2
Объяснение: