для этого еблана в Задача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює решта
Объяснение:
Задача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює рештаЗадача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює решта
пусть О центр окружности, тогда
пусть ОК- перпендикуляр к ВС,
ОК и есть радиус треугольника
треугольники ОВС и КВО подобные, так как они оба прямоугольные, а угол В у них общий, тогда
ОК/ВО=ОС/ВС
ОС=6/2=3, ток как центр полувписаного круга делит пополам(равнобедренный ведь треугольник)
ВО^2=BC^2-OC^2=25-9=16
тогда
ОК=ОВ*ОС/ВС=4*3/5=12/5
тоесть радиус = 12/15
а далее расмотрим треугольник ВОК
BK^2=BO^2-OK^2=16-144/25=(400-144)/25=256/25=((16/5)^2
BK=16/5
КС=5-16/5=(25-16)/5=9/5
ответ
радиус 12/5
делит на отрезки
возле основы 9/5
возле вершины 16/5
ну в смысле не альфа а бетта...