Объяснение:
Чтобы решить эту задачу, нужно знать как минимум 2 операции с матрицами:
Сложение/вычитание матриц. Если у тебя есть матрица A с элементами (т.е. на i строке j столбца находится число ), и некоторая другая матрица той же размерности B с элементами , то в итоговой матрице C = A + B элементы , с вычитанием все то же самое, только разность a и b. На практике это выглядит как сумма (или разность) соответствующих чиселУмножение матриц на некоторую константу. Если умножать матрицу A с элементами на некоторое постоянное число C, то C*A = , т.е. умножаете это число на каждый элемент матрицы.Теперь давайте найдем по условию 3A
Теперь 2B:
Теперь поэлементно из одного вычитаем другое:
\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]
Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:
\[\frac{sin x * cos x}{16} = 0\]
Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):
\[2sin x * cos x = 0\]
По формулам тригонометрии мы знаем, что:
\[2sin x * cos x = sin 2x\]
Запишем наше красивое уравнение:
\[sin 2x = 0\]
А теперь его решим.
Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:
\[sin x = a\]
\[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[sin 2x = 0\]
Но у нас будет не просто х, а двойной:
\[2x = (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]
Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[sin 2x = 0 \]
\[2x = \pi k, k \in \mathbb{Z}\]
Чтоб найти х надо каждый член поделить на два и из этого получим следующее:
\[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]
ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}