Найдите промежутки монотонности функции: у = ( х² + 1 ) / х
x ∈ ( -∞ ; -1 ] и x ∈ [ 1 ; ∞ )_функция монотонно возрастает (↑) ;
x ∈ [-1 ; 0) и x ∈ (0 ; 1 ] _функция монотонно убивает (↓ ) .
Объяснение: у =( х² + 1 ) / х D(y) : x∈ R \ { 0}
( u(x) /v(x) ) ' = ( u'(x)*v(x) - u(x)*v'(x) ) / v²(x)
у '=( ( х² + 1 ) / х ) ' = ( (x²+1) ' *(x) -(x²+1)*(x)' )/x² =( (2x+0) *x -(x²+1)*1 ) /x²
(2x*x - x²-1 )/x² = (x² -1) /x² = (x+1)(x-1) /x²
Функция монотонно возрастает ,если y ' ≥ 0 ;
Функция монотонно убивает ,если y ' ≥ 0 ;
знаки y ' + + + + + + + + +[ -1] - - - 0 - - - [ 1] + + + + + + +
интервалы монотон. ↑ ↓ ↑
x ∈ ( -∞ ; -1 ] и x ∈ [ 1 ; ∞ )_функция монотонно возрастает (↑) ;
x ∈ [-1 ; 0) и x ∈ (0 ; 1 ] _функция монотонно убивает (↓ ) .
Объяснение:
1) Преобразуем в многочлен:
а) (у - 4) ² = y ^ 2 - 2 * y * 4 + 4 ^ 2 = y ^ 2 - 8 * y + 16;
б) (7 * х + а) ² = 49 * x ^ 2 + 14 * x * a + a ^ 2;
в) (5 * с - 1) * (5 * с + 1) = 25 * c ^ 2 - 1;
г) (3 * а + 2 * b) * (3 * а - 2 * b) = 9 * a ^ 2 - 4 * b ^ 2;
2) У выражение:
(а - 9) ² - (81 + 2 * а) = a ^ 2 - 18 * a + 81 - 81 - 2 * a = a ^ 2 - 20 * a = a * (a - 20);
3) Разложиv на множители:
а) х ² - 49 = (x - 7) * (x + 7);
б) 25 * х² - 10 * х * у + у ² = (5 * x) ^ 2 - 2 * (5 * x) * y + y ^ 2 = (5 * x - y) ^ 2.
1.1x+1.2y=750
1.1x+1.1y=715
1.1x+1.2y=750
0.1y=35
y=350
x=650-350=300