Используем формулу косинуса двойного угла cos2x=1-2sin²x и преобразуем неравенство к виду |18sin²x+6(a-2)sinx-2a-5|≤9 или -9≤18sin²x+6(a-2)sinx-2a-5≤9 Если неравенство должно быть выполнено для всех x, то значит в частности и для x=0 оно должно быть верным. Если x=0, то и sinx=0. Подставим 0 в неравенство: -9≤18*0+6(а-2)*0-2а-5≤9 -9≤2а+5≤9 -7≤a≤2 - мы получили первое ограничение на а. Пусть теперь x=π/2: -9≤18+6(a-2)-2a-5≤9 -5/2≤a≤2 - мы еще больше ограничили множество возможных значений а, но это мало что дало. А если x=3π/2? Тогда -9≤18-6(a-2)-2a-5≤9 2≤a≤17/4 Вот теперь повезло. В самом деле, если а<2, то неравенство не будет верным для x=3π/2, а если a>2, то для x=0 и π/2, между тем нам надо чтобы оно выполнялось для любого x, а отсюда следует что подходит только а=2. Остается проверить эту двойку: |9cos2x-6(2-2) sinx+2*2-4| ≤ 9 9|cos2x|≤9 |cos2x|≤1 Очевидно, что неравенство верно для всех х, а значит двойка нам подходит. ответ: а=2. Вообще обычно такие примеры решаются более сложными методами. Здесь просто все сложилось удачно.
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.