а)(х+7)в кводрате>х(х+14) x²+14x+49>x²+14x 49>0 б)b в кводрате+5>10(b-2) b²+5>10b-20 b²-10b+25>0 (b-5)²>0 при b=5 выполняется равенство 2)Извесно что а>b.Сравните: а)18а и 18b б)-6,7а и -6,7b в)-3,7b и -3,7а Результат сравнения запишите в виде неравенства.
a b БОЛЬШЕ 0 1 18a>18b 2. =-6.7a < -6.7b 3/ -3.7b>-3.7a
3)Оцените периметр и площядь прямоугольника со сторонами а см и b см, если известно, что 1,5<a<1,6 3,2<b<3,3 P=2(a+b) S=ab 9.4<P<9.8 4.8<S<5.28
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
д= 2.7
S=(2а1+5д)*6/2=(-24+13.5)*3= -31.5
ответ:S = -31.5