Повозившись немного с выделением полного куба, можно заметить, что здесь выделяется множитель х+у+8, поэтому уравнение можно переписать в виде (x+y+8)((2x-y-8)²+3(y-8)²)=0. Проверяется это раскрытием скобок и делением всего уравнения на 4. Отсюда следует, что либо у=8, х=8, либо х+у=-8. Т.к. х, у - натуральные, то второе невозможно, поэтому наибольшее значение х+у=8+8=16.
По неравенству о средних при любых х,у≥0 получим (x³+y³+8³)/3≥∛(8³x³y³)=8xy. Равенство в неравенстве о средних достигается только при х=у=8. Значит x+у=8+8=16.
ab=10a+b, ba=10b+a,
ab-ba=10a+b-(10b+a)=10a+b-10b-a=9a-9b=9(a-b);
ab+ba=10a+b+10b+a=11a+11b=11(a+b)