Сделаем подстановку 2х = t и рассмотрим функцию у = cos(t).Поскольку функция у = cos(t) является периодической с наименьшим положительным периодом, равным 2π, то выполняется следующее соотношение:cos(t) = cos(t + 2π).Возвращаясь к сделанной подстановке, получаем следующее соотношение:cos(2х) = cos(2х + 2π) = cos(2 * (х + π)).Следовательно, функция у = cos(2х) является периодической с периодом, равным π.Покажем, что данные период является наименьшим положительным.Допустим, существует положительный период данной функции, меньший чем π.Пусть этот период равен T.Тогда должно выполняться следующее соотношение:cos(2х) = cos(2(х + Т)) = cos(2х + 2Т) .Следовательно, число 2Т должно являться периодом функции у = cos(t).Однако такого не может быть, поскольку 2Т < 2π, а число 2π является наименьшим положительным периодом функции у = cos(t).Следовательно, π является наименьшим положительным периодом функции у = cos(2х).ответ: наименьший положительный период функции у=cos2x равен π.
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).