X км/ч - скорость лодки в стоячей воде х+2 - скорость лодки по течению х-2 - скорость лодки против течения 35/x+2 -время движения по течению 35/х-2 - время движения против течения 35/x+2 + 35/x-2 =6 переносим всё в левую часть, приводим к общему знаменателю: в числителе 35(x-2)+35(x-2)-6(x-2)(x+2), в знаменателе (x-2)(x+2) дробь =0 когда числитель =0, а знаменатель нет 35(x-2)+35(x+2)-6(x-2)(x+2)=0 70x-6x^2+24=0 3x^2-35x-12=0 D=35^2-4*3*(-12)=1369 x1=35-37/6=-1/3 не подходит x2=35+37/6=12 скорость лодки в стоячей воде 12км/ч
Решение y = x³ + 3x² 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² + 6x или f'(x) = 3x*(x + 2) Находим нули функции. Для этого приравниваем производную к нулю 3x*(x + 2) = 0 Откуда: 3x = 0 x₁ = 0 x + 2 = 0 x₂ = - 2 (-∞ ;-2) f'(x) > 0 функция возрастает (-2; 0) f'(x) < 0 функция убывает (0; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
х - та самая сторона
х +4 длина
х*(х+4)=45
х²+4х-45=0
Д=16+4*45=196
х=(-4±√196)/2
возмем только положительный корень
-2+7=5
ответ одна сторона 5 м
другая 5+4=9 м
9*5=45 кв м