f(x)=x²-3x+2
Найдём нули функции:
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-2)(х-1)=0
х-2=0 => x=2
x-1=0 => x=1
Точки пересечения параболы с осью Х: (1;0) и (2;0)
Найдем вершину параболы по формуле x=-b/2a: a=1; b=-3: x=3/2*1=1.5
y=1.5²-3*1.5+2
y=-0.25
Координаты вершины параболы: (1.5;-0.25)
Все. Параболу можно построить по этим 3-м точкам: (1;0), (1.5;-0.25) и (2;0).
Чтобы график был точнее, можно найти еще несколько точек, подставляя различные значения х в уравнение параболы.
Таблица и график во вложении
Рассмотрим функцию
Её область определения:
Приравниваем функцию к нулю:
Произведение равно нулю, если один из множителей равен нулю
На интервале найдем решение неравенства
_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток -
Целое отрицательное число из промежутка: -1
ответ: -1.
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный
Целые отрицательные числа промежутка: -3; -2; -1.
ответ: -3; -2; -1.
Рассмотрим функцию
Область определения:
Приравниваем функцию к нулю:
Дробь обращается в 0 тогда, когда числитель равен нулю
По т. Виета:
Найдем решение неравенства
___+___(-1)___-____(0)____-__(2)____+____
Целых отрицательных чисел - НЕТ
ответ: целых отрицательных чисел нет
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю
Дробь обращается в нуль, если числитель равен нулю
Вычислим решение неравенства:
__+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства:
Целые отрицательные решения : -1
ответ: -1.