а) Первые 4 члена последовательности.
y(1) = (3*1+10)/(3-4*1) = (3+10)/(3-4) = 13/(-1) = -13
y(2) = (3*2+10)/(3-4*2) = (6+10)/(3-8) = 16/(-5) = -3,2
y(3) = (3*3+10)/(3-4*3) = (9+10)/(3-12) = -19/9
y(4) = (3*4+10)/(3-4*4) = (12+10)/(3-16) = -22/13
б) Чтобы найти, начиная с какого числа все члены последовательности будут больше -1, нужно составить неравенство.
(3n + 10)/(3 - 4n) > -1
(3n + 10)/(3 - 4n) + 1 > 0
(3n + 10 + 3 - 4n)/(3 - 4n) > 0
(13 - n)/(3 - 4n) > 0
Поменяем знаки в числителе и в знаменателе одновременно, дробь от этого не изменится.
(n - 13)/(4n - 3) > 0
По методу интервалов
n ∈ (-oo; 3/4) U (13; +oo)
Так как 13 не входит в промежуток, то
ОТВЕТ: Начиная с n = 14
1) 8х-2+х<9х+6
8х-9х+х<6+2
0<8 верно
2) (у²-1)>у²-2
у²-1>у²-2
у²-у²>1-2
0>-1 верно
3) а) 10< х+у<14 ; б) 6<х-у<6 не выполнимое условие в) 16<ху<40 г) 8<х<10
4) периметр это 3а у равностороннего треугольника,значит
1,1≤а≤1,2 3,3≤ 3а ≤ 3,6
5) 1,7< √3<1,8 -4√3= -√(16·3)=-√48 значит это значение меньше √3
б)2√3 +1 √4·3 +1=√12 +1 это значение больше √3
5) Какие целые значения может принимать у, если 0,125<у<0,25 условие не верное, списали не правильноздесь нет целых
1) y-2. ОДЗ: y≠2
2) a-1. ОДЗ: a≠1
Объяснение:
№1. (y+2+):=:==y-2. ОДЗ: y≠2
№2. (a+1+):=:==a-1. ОДЗ: a≠1
ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.