Пусть АО - высота башни.
АК - наклонная под углом 60°.
расстояние от точки К до основания башни - КО
расстояние от точки К до вершины башки - наклонная АК.
Дано:
АО = 35√3 м
∠АКО = 60°
Найти: проекцию КО и наклонную АК.
Рассмотрим ΔАОК - прямоугольный.
sin 60° = 35√3/АК
√3/2 = 35√3/АК
АК = (2*35√3) / √3 = 70 (м) - расстояние от К до самой высокой точки башни.
КО² = 70² - (35√3)² = 4900 - 3675 = 1225
КО = √1225 = 35 (м) - расстояние от точки К до основания башни
ответ: расстояние от точки К до основания башни 35 м, а
расстояние от точки К до самой высокой точки башни 70 м.
Сначала всё обозначим.
1) Скорость по шоссе x, скорость по дороге x-2.
2) Время по шоссе 27/2, время по дороге 28/x-2
3) Разница во времени 15 минут, это 15:60=0,25 (часа).
4) Можем составить уравнение: 28/x-2 - 27/2 = 0,25
5) Решаем, общий знаменатель x*(x-2)
27x-54-28x = 0,25x^2-0,5x
-x - 54 = 0,25x^2 - 0,5x
-x + 0,5x - 0,25x^2 - 54 = 0
-0,25x^2 - 0,5x - 54 = 0
0,25x^2 + 0,5x + 54 = 0
6) Находим x1 и x2 через дискриминант, x1 = 18 (км\час, скорость по шоссе). x2 отрицательный, отбрасываем.
7) Скорость по дороге 16 км\час.
8) Проверка. 27 : 18 = 1,5 (часа)
28 : 16 = 1,75 (часа)
Разница: 1,75 - 1,5 = 0,25 (часа) = 15 минут, как в условии. Всё верно.