значит заданная окружность - окружность радиуса 5 и с центром в точке О(0;5),
отсюда следует что искомая окружность и заданная не могут касаться внутренне, так как их радиусы одинаковы
значит в данном случае внешнее касание в точке М(3;1) так как точка касания и центры окружностей лежат на одной пряммой, то обозначив через А(x;y) центр искомой окружности и используя векторы получим вектор ОМ=вектор МА (0-3;5-1)=(3-x;1-y) -3=3-x; 4=1-y
x=3+3=6 y=1-4=-3 A(6;-3) - центр второй окружности значит ее уравнение ( <-- ответ) ---- или
2.=3x^4-12x^2+18x
3.=28a^2b+24ab^2+2a^2b-16ab^2=30a^2+8ab^2
2).=12m+20m^2-60m-20m^2=-48m
m=-0.2
-48*(-0.2)=9.6
3).1.=5a(a-4b)
2.=7x^3(1-2x^2)
3.=2ab(3ab-4a+6b)
4).1.x^2-3x=0
x(x-3)=0
x=0 или x-3=0
x=3
2.(x-2)(x+5)=0
x-2=0 или x+5=0
x=2 x=-5
3).(18xy+6x)+(-24y-8)=6x(3y+1)-8(3y+1)=(3y+1)(6x-8)
(3*0,45+1)(6*5/3-8)=2,35*2=4,7
4).1.=3(a-b)+x(a-b)=(a-b)(3+x)
2.=(a+b)^2+(3a+3b)=(a+b)^2+3(a+b)=(a+b)(a+b+3)
3.=(x^8-4X^5)+(X^3-4)=X^5(X^3-4)+(X^3-4)=(x^3-4)(x^5+1)