Коэффициент перед х² отрицательный,значит ветви параболы направлены вниз. Число по модулю меньше 1. значит парабола "шире" параболы Х².Парабола имеет максимум.находим точки на оси Х.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Объяснение:
у=-1/2х^2+х-1
Коэффициент перед х² отрицательный,значит ветви параболы направлены вниз. Число по модулю меньше 1. значит парабола "шире" параболы Х².Парабола имеет максимум.находим точки на оси Х.
у=0=-1/2х^2+х-1
ищем корни (-1±√(1-4*(-1)(-1/2))/(2*(-1)) =(-1±√(-1))/(-2)
под корнем отрицательное число,решений нет.
Значит парабола целиком ниже оси Х отрицательная.
Ищем координаты вершины параболы.
Х вершины равен -в/2а=-1/(-1)=1
У вершины равен У=-1/2+1-1 =-1/2
(1;-1/2) вершина.
Строим таблицу х -1 0 1 2 3
у -2,5 -1 -0,5 -1 -2,5
Точка пересечения с осью У при Х=0 у= 0+0-1 =-1 (0;-1)
Наносим точки на оси координат и соединяем плавной кривой.
Свойства. Возрастает при х∠1 ,убывает при 1∠х .
отрицательна при всех значениях Х. вершина-точка максимума.