1.
а) 3b+(5a–7b) = 3b+5a–7b = 5a–4b
б) –(8c–4) +4 = –8c+4+4 = 8–8c
в) (2+3x) +(7x–2) = 2+3x+7x–2 = 10x
г) 3(8m–4)+6m = 3×8m–3×4+6m=24m–12+6m=30m–12
д) 15–5(1–a)–6a = 15–5–5a–6a= 10–11a
е) (2a–7y)–(5a–7) = 2a–7y–5a+7 = –3a–7y±7
ж) 14b–(15b+y)–(y+10b) = 14b–15b–y–y–10b = –11b–2y
з) 7(5a+8)–11a–58 = 7×5a+7×8–11a–58 = 35a+56–11a–58 = 24a–2
и) 9x+3(15–8x)–35 = 9x+3×15–3×8x–35 = 9x+45–24x–35 = 10–15x
к) 33–8(11b–1) –2b = 33–8×11b–8–2b = 33–88b–8–2b = 25–90b
2.
а) 0,7b+0,3(b–5) = 0,7b+0,3b–0,3×5 = b–1,5 = –0,81–1,5 = –2,31
б) (y–7)–(14–y) = y–7–14+y = 2y–21 = –0,6–21= –21,6
Объяснение:
Алгебра мой конёк)
Надеюсь
На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::
Д=9;х=2;х=-1
х не=2;х не=1(ОДЗ)
ответ:-1