Если это системы уравнений, то решается довольно-таки просто: Решаем первую смотрим на х: в первом уравнении он со знаком +, во втором - со знаком -, значит можно избавиться от него сложением, перед эти выразив: x=4+3y x-x-3y+y=4+8
x=4+3y -2y=12 Далее решаем сначала второе уравнение, после чего подставляем у в первое x=4+3y y=-6
x=4+3*(-6)=-14 y=-6 ответ:(-14;-6)
Решаем вторую систему Смотрим на этот раз на у: в первом уравнении -6у, во втором 6у. Значит, можно так же избавиться сложением первого со вторым (не забудь перед этим выразить у). Далее аналогично.
1) Ни 2, ни 3 не могут стоять на конце числа, являющегося квадратом. Один 0 тоже не может там быть. Остается один вариант- число оканчивается на 5 На первом месте либо 2, либо 3 2035 или 3025 Проверкой убеждаемся, что 55²=3025
2) если б) - верно, то а) А+51 оканчивается на 2 нет квадрата такого числа, которое оканчивается на 2 и тогда в) А-38 есть точный квадрат тоже неверно, потому как оканчивается на 3, а квадрата числа, оканчивающегося на три тоже нет ответ б) неверно, значит а) и в) верные
3) Нет. Так как 10·10=100 и 4·1=4 100:4=25 - нечетное число плиток в квадрате не может уместиться
5^2x/25=5^x-1
5^2x=5^x-1 * 5²=5^x+1
2x=x+1
x=1