1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Сумма арифметической прогрессии считается по формуле где a1 - первый член прогресси; d - шаг или разность прогрессии; n - количество членов, которые надо просуммировать. (Кстати, это одна из формул для суммы первых n членов)
Первый член у нас задан, он равен a1= -9, количество первых членов n=5. Задан и шаг, только необычно. В арифметической прогрессии каждый член, кроме первого, отличается на одну и ту же величину (шаг). Нам задано, что (n+1)-й член меньше n-го члена на 16. Это означает, что шаг равен d = -16. С минусом, т.к. каждый последующий член меньше:
a=2; b=11; c=-6
D=(11)²-4×2×(-6)=169
x= _13_-_11_ = _2_ = 0,5
2×2 4
x=_13_+_11_ =_24_ = 6
2×2 4
ответ: х=0,5 ,х=6.