Всадовому насосу, перекачиваему 10 литров воды за 1 минуту, подключили второй насос, перекачивающий тот же объем воды за 5 минут. сколько минут эти два насоса должный работать совместно, чтобы перекачать 60 литров воды?
Дополняем вопрос недостающими буквами - В. РЕШЕНИЕ 1. Всего событий - n. N(A) = 8 - благоприятных для А - дано. N(B) = n - N(A) = 17 - 8 = 9 - благоприятных для В - ОТВЕТ р(А) = 0,32 - вероятность А - дано. р(В) = 1 - 0,32 = 0,68 - вероятность события В - ОТВЕТ 2. Всего вариантов на кости - граней - n =6. Событие А - выпало четное - A={2,4,6} - m(А) = 3 Событие В - больше 3 - B={4,5,6} - m(B) = 3 Событие АВ - пересечение множеств А∩В = {4;6} - m(AB) = 2. Вероятность АВ по классической формуле p(AB) = m(AB)/n = 2/6 = 1/3 - вероятность - ОТВЕТ (≈33,3%) 3. Всего для каждого броска вариантов - n = 6. Событий А - меньше 3 - A={1,2} - m(A) = 2, p(A) = 2/6 = 1/3 Событие В - больше 4 - B={5,6} - m(B) = 2, p(B) = 2/6 = 1/3 Элементарные события: 1,5 и 1,6 и 2,5 и 2,6 - четыре варианта. Событие А*В - "И" А "И" В - произведение вероятностей каждого. p(A*B) = 1/3 * 1/3 = 1/9 - вероятность - ОТВЕТ (≈11,1%) ИЛИ Для двух бросков = n = 6² = 36, m(AB) = 4, p(A*B) = 4/36 = 1/9 - ОТВЕТ 4. Вероятность несовместных событий ("ИЛИ") равна сумме вероятностей каждого - называется "ИЛИ" U "ИЛИ" V. Р(U+V) = р(U)+р(V) = 0,3 + 0,5 = 0,8 - вероятность - ОТВЕТ
1.Пусть на первой полке Х книг, тогда на второй Х+6 книг, а на третьей полке Х-5 книг. Всего 160 книг. Значит Х+Х+6+Х-5=160 и Х=53. То есть На первой полке 53 книги (что на 6 книг меньше, чем на второй и на 5 книг больше, чем на третьей). На второй 59 книг На третьей 48 книг 2. Пусть х - первоначальная скорость машин, тогда х + 10 - скорость первой машины после увеличения х - 10 - скорость второй машины после увеличения (х + 10) * 2 - расстояние, которое проедет 1-я машина (х - 10) * 3 - расстояние, которое проедет 2-я машина Поскольку в условии сказано, что машины проедут одинаковое расстояние, то получим такое равенство: (х + 10) * 2 = (х - 10) * 3 2х + 20 = 3х - 30 3х - 2х = 30 + 20 х = 50 (км/ч) - первоначальная скорость машин 50 + 10 = 60 (км/ч) - скорость первой машины 50 - 10 = 40 (км/ч) - скорость второй машины ответ: 60 км/ч, 40 км/ч
10:5=2 л/мин второй насос за 1 мин
10+2=12 л/мин оба насоса за 1 мин
60:12=5 мин оба должны работать вместе