Не считая 1 и само число N остается 8 делителей. Если оно делится на 5 и 9 оно делится на 5 ,3,9,15,45. Понятно что в разложении этого числа на простые множители будут простые множители 3 и 5 . Предположим что есть еще хотя бы 1 простой множитель (отличный от 3 и 5) равный p то число еще будет иметь делители 3p 5p 9p p Но тогда уже будет 9 делителей. А если есть еще простые делители кроме p ,то и подавно. Таким образом эти числа имеют структуру представления: N=3^k * 5^m k>=2 не трудно догадаться из комбинаторных соображений ,что число делителей числа: 3^k*5^m число его делителей равно: (k+1)*(m+1) (k+1)*(m+1)=10 (по условию) k>=2 m>=1 то возможно: k=4 m=1 то есть число: 3^4*5=405 Других чисел нет. ответ:405
(2,7х - 15) – (3,1х - 14).=2,7х-15-3,1х+14=-0,4х-1
2,7 - 49 : (-7).=2,7-(-7)=9,7
А14 8b
А15.2х-4=-3 2х=1 х=0,5 у=2*0,5-4=-3 (0,5;-3)
А16.(0;4)
А17 не понятно что вычислить
А18 3) (2; 11) так как 11=3*2+5
А19 3) 1,5х6 у4
А20.12ху – 4у2.=4у(х - у)
А21.а(у - 5) – b(y - 5).=(у-5)(а-b)
А22 2а(а - 18) + 3(а2 + 12а) – 5а2 + 3=2а²-36а+3а²+36а-5а²+3=3
А23каких дробей непонятно
В1 8у – (3у + 19) = -3(2у - 1).
8у-3у-19=-6у+3
5у+6у=3+19
11у=22
у=2
В2 5х2 – 4х = 0. х(5х-4)=0
х=0 5х=4 х=4/5
В3. Решите уравнение
ответ:
В4. Упростите выражение .
ответ непонятно