Объяснение:
Система линейных уравнений может иметь:
одно решение, когда графики прямых пересекаются;
ни одного, когда графики параллельны;
бесконечное множество, когда графики сливаются (совпадают).
3)Сколько решений имеет система уравнений у = 2 х+1 и y=7 - 2x ?
Одно решение, прямые пересекаются, координаты точки пересечения (1,5; 4)
4) Сколько решений имеет система уравнений х - у = 5 и 3y - 3x = 4 ?
Ни одного, графики параллельны.
5) Сколько решений имеет система уравнений x-y= 5 и 3y - 3x = -15 ?
Бесконечное множество, графики сливаются (совпадают).
* * * * * * * * * * * * * * * * * * * * * * *
Решить уравнение |x-2| - |x-3| +|2x -8| = x
ответ: { 3 ; 7 }
Объяснение: |x-2| - |x-3| +|2x -8| =x ⇔ |x-2| - |x-3| +2|x - 4| =x
а) x < 2 иначе x ∈ (- ∞ ;2)
-(x-2)+ (x-3) - 2(x - 4) = x ⇔ 3x =7 ⇔ x = 7/3 ∉ (- ∞ ;2) * * * 7/3> 2 * * * ;
б) 2 ≤ x < 3 иначе x ∈ [2 ;3)
(x-2)+ (x-3) - 2(x - 4) = x ⇔ x = 3 ∉ [2 ;3) ;
в) 3 ≤ x < 4 иначе x ∈ [3 ;4)
(x-2)- (x-3) - 2(x - 4) = x ⇔ x = 3 ;
г) x ≥ 4 иначе x ∈ [4 ;∞)
(x-2) - (x-3) + 2(x - 4) = x ⇔ x=7 .
x=10, x= -10
x∈(-бесконечность; -10)u(10; +бесконечность) - производная положительная
x∈(-10;0)u(0;10) - производная отрицательная
x = -10 - максимум
х = 10 - минимум
в отрезок x∈[0.5;17] входит точка минимума.
Наименьшее знаение будет в точке х=10
y(10) = 39