Катер проплыл 12 км против течения реки и 5 по течению. при этом он проплыл столько времен, сколько бы ему понадобилось, если бы он плыл 18 км по озеру. какова собственная скорость катера, если известно, что скорость течения реки равна 3 км/ч?
Пусть х-собственная скорость катера, тогда(х+3)-его скорость по течению,а (х-3)-против течения. 5(х+3)+12(х-3)=18х решение: 5х+15+12х-36=18х х=21 ответ:21км/ч.
За 12 часов совместной работы двое рабочих выполнили 12/60 = 1/5 всего задания. Второму рабочему потребовалось 80 часов на выполнение 4/5 всего задания. Тогда время на выполнение всего задания вторым рабочим: t₂ = 80:4/5 = 100 (ч) И скорость работы второго рабочего: v₂ = 1/100 = 0,01 (задания в час) За 12 часов второй рабочий сделает: S₂ = v₂t₂' = 0,01*12 = 0,12 (задания) Так как вместе оба рабочих за 12 часов выполнили 1/5 задания, то первый рабочий за это время выполнил: S₁ = S - S₂ = 1/5 - 0,12 = 0,2 - 0,12 = 0,08 (задания) Его скорость: v₁ = S₁/t₂' = 0,08:12 = 8/1200 = 1/150 (задания в час) Время на выполнение всего задания вторым рабочим: t₁ = 1/v₁ = 150 (ч)
За 12 часов совместной работы двое рабочих выполнили 12/60 = 1/5 всего задания. Второму рабочему потребовалось 80 часов на выполнение 4/5 всего задания. Тогда время на выполнение всего задания вторым рабочим: t₂ = 80:4/5 = 100 (ч) И скорость работы второго рабочего: v₂ = 1/100 = 0,01 (задания в час) За 12 часов второй рабочий сделает: S₂ = v₂t₂' = 0,01*12 = 0,12 (задания) Так как вместе оба рабочих за 12 часов выполнили 1/5 задания, то первый рабочий за это время выполнил: S₁ = S - S₂ = 1/5 - 0,12 = 0,2 - 0,12 = 0,08 (задания) Его скорость: v₁ = S₁/t₂' = 0,08:12 = 8/1200 = 1/150 (задания в час) Время на выполнение всего задания вторым рабочим: t₁ = 1/v₁ = 150 (ч)
тогда(х+3)-его скорость по течению,а (х-3)-против течения.
5(х+3)+12(х-3)=18х
решение:
5х+15+12х-36=18х
х=21
ответ:21км/ч.