М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anonim654321
Anonim654321
17.01.2021 19:41 •  Алгебра

Решить ! гусь тяжелее утки на 2кг,но легче щенка на 3 кг.на сколько килограммов утка легче щенка?

👇
Ответ:
zhorik2006nice
zhorik2006nice
17.01.2021

утка легче гуся на 2 кг, а гусь легче щека на 3 кг, значит, 2+3=5 кг

утка легче щенка на 5 кг.

4,4(97 оценок)
Ответ:
romamuver
romamuver
17.01.2021

2+3=5кг  утка легче щенка

4,8(88 оценок)
Открыть все ответы
Ответ:
Sambufer1
Sambufer1
17.01.2021
1) (4x-4y) ²= (4(x-y))² = 16 (x-y)²
если даже разложить квадрат разности по формуле сокращенного умножения:
(4х-4у)² = (16x²-2*4x*4y+16y²) = (16x²-32ху +16у²) = 16(х²-2ху +у²) =
= 16 (х-у)²
2) (5у+5)²= (5(y+1))²= 25 (у+1)²
или 
(5у+5)²= (25у²+2*5*5у +25) = 25(у²+2у+1) = 25*(у+1)²

3) (8m-10n)³ = (2*4m -2*5n)³= 8(4m-5n)³

4)  (a²-9a)² = (a (a-9))²= a² (a-9)²

5)  (6x-9y)³= (3 (2x-3y))³= 27 (2x-3y)³

6)(22x⁴-28x⁴-28x²y³) ⁵ = (-6x⁴-28x²y³) ⁵=
= (2x² (-3x²-14y³))⁵=
= 2⁵x⁵*² (-3x²-14y³)⁵ = 32x¹⁰ (-3x²-14y³)⁵
или
= (-2х² (3х² +14у³))⁵ = -32х¹⁰ (3х²+14у³)⁵
4,8(37 оценок)
Ответ:
edynorozhok
edynorozhok
17.01.2021
Находим производную заданной функции:
y'( \frac{x^2+4}{x^2-4})= \frac{(x^2+4)'*(x^2-4)-(x^2+4)*(x^2-4)'}{(x^2-4)^2}=- \frac{16x}{(x^2-4)^2}.
Отсюда видно, что производная равна нулю только в одной точке х = 0.
Но у функции есть 2 точки разрыва, которые легко увидеть, если уравнение записать в виде (разложив знаменатель на множители):
y= \frac{x^2+4}{(x-2)(x+2)} .
То есть в точках х=-2 и х=2 функция имеет разрыв.
В этих же точках производная не существует.
Из этого следует, что функция имеет 3 критические точки:
х = -2,  х = 0,  х = 2.
Найдём знаки производной левее и правее этих точек:
х =    -3          -2      -1          0         1          2           3
y' = 1.92          -       1.78      0      -1.78        -        -1.92.
Из этой таблицы видно, что у функции есть местный максимум в точке х = 0, при переходе через которую производная меняет знак с + на -.
Также можно дать ответ на монотонность функции:
Где производная положительна - там функция возрастает, где производная отрицательна - там функция убывает.
Функция возрастает:   (-∞ < x < -2) ∪ (-2 < x < 0),
                  убывает:   (0 < x < 2)  ∪ (2 < x < +∞).
4,7(84 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ