Пусть первый мастер получает х руб./день, а второй у руб./день, тогда первый за 15 дней получил 15х руб., а второй за 14 дней получил 14у руб. По условию, всего за работу мастерами было получено 23 400 руб. Составим первое уравнение: 15х+14у=23 400
Известно, что первый мастер за 4 дня получил на 2 200р. больше ,чем второй за 3 дня. Составим второе уравнение: 4х-3у=2 200
Составим систему двух уравнений с двумя переменными: {15x+14y=23 400 |*4 { 4x-3y=2 200 |*(-15)
{60x+56y=93 600 {-60x+45y=-33 000 + 101y=60 600 |:101 y=600 (руб.)-получает второй мастер за один день работы 4х+3*600=2200 4х-1800=2200 4х=2200 + 1800 4х=4000 х=4000:4 х=1000 (руб.)-получает первый мастер за один день работы
Пусть первый мастер получает х руб./день, а второй у руб./день, тогда первый за 15 дней получил 15х руб., а второй за 14 дней получил 14у руб. По условию, всего за работу мастерами было получено 23 400 руб. Составим первое уравнение: 15х+14у=23 400
Известно, что первый мастер за 4 дня получил на 2 200р. больше ,чем второй за 3 дня. Составим второе уравнение: 4х-3у=2 200
Составим систему двух уравнений с двумя переменными: {15x+14y=23 400 |*4 { 4x-3y=2 200 |*(-15)
{60x+56y=93 600 {-60x+45y=-33 000 + 101y=60 600 |:101 y=600 (руб.)-получает второй мастер за один день работы 4х+3*600=2200 4х-1800=2200 4х=2200 + 1800 4х=4000 х=4000:4 х=1000 (руб.)-получает первый мастер за один день работы
Объяснение:
y=(4/√(3x-15))+8/(|x|-6)
ОДЗ:
3х-15>0 3x>15 |÷3 x>5
|x|-6≠0
Раскрываем модуль, полечаем систему уравнений:
{x-6≠0 {x≠6
|-x-6≠0 {x≠-6 ⇒
x∈(5;6)U(6;+∞).