1. Минимальное двузначное натуральное число, которое делится на 3 и на 4 - это 12. Максимальное - 96. 2. Числа, делящиеся на 3 и 4, это числа Если мы вынесем 12 за скобку, то получим общую формулу таких чисел: . Так как нас интересуют только двузначные числа и максимальное число будет 96, то запишем: Решаем это уравнение: Но включая 96, n = 8. ответ: Да, n = 8. ПРИМЕЧАНИЕ: Вы, конечно, можете просто поделить 96/12 и получить 8, НО Вам всё равно придётся доказывать, почему получилось именно 8 чисел и придётся доказать, что они все делятся на 3 и на 4. Так что через вывод общей формулы числа решать, мне кажется, правильнее.
Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
2. Числа, делящиеся на 3 и 4, это числа
Если мы вынесем 12 за скобку, то получим общую формулу таких чисел:
Так как нас интересуют только двузначные числа и максимальное число будет 96, то запишем:
Решаем это уравнение:
Но включая 96, n = 8.
ответ: Да, n = 8.
ПРИМЕЧАНИЕ:
Вы, конечно, можете просто поделить 96/12 и получить 8, НО Вам всё равно придётся доказывать, почему получилось именно 8 чисел и придётся доказать, что они все делятся на 3 и на 4. Так что через вывод общей формулы числа решать, мне кажется, правильнее.