Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
-3*-2.3 + 4 = 6.9 + 4 = 10.9
2)Найдите значение аргумента,при котором значение функции y=2/7x - 9 равно -5
2/(7x) - 9 = -5
2/(7x) = 4
1/(7x) = 2
7x = 1/2
x = 1/14
Если (2/7)x - 9 = -5, то
(2/7)x = 4
(1/7)х = 2
х = 14
3)Найдите координаты точки пересечения графиков функции y = -5x и y = 3x+8
-5x = 3x+8
8х = -8
х = -1
4)Постройте график функции y= -1/3x +2
Если это график функции (-1/3)*x + 2, то это прямая, которую можно построить по двум точкам, например, при х = 0 у = 2 и при х = 3 у = 1.