М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
валерия20156
валерия20156
12.07.2020 11:51 •  Алгебра

Решите уравнение 0,2*(3х-5)-0,3*(х-1)=0,7

👇
Ответ:
lika343
lika343
12.07.2020
0,2*(3х-5)-0,3*(х-1)=0,7
0,6x - 1 - 0.3x - 0.3 = 0.7
0.6x - 0.3x = 0.7 + 1 + 0.3
0.3x = 2
x = 2 : 0.3
x = 6.(6)
4,5(55 оценок)
Открыть все ответы
Ответ:
Нолик27
Нолик27
12.07.2020
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
4,8(26 оценок)
Ответ:
LindaKron
LindaKron
12.07.2020
Имеем такое число:
32^{ \frac{6}{5}}\\
Запишем данное число в другом виде:
32^{ \frac{6}{5}}=32^{\frac{1}{5}*6}
Квадратный корень из числа, равен этому числу в степени 1/2:
\sqrt{x} =x^{\frac{1}{2}}
Кубический корень из числа равен этому числу в степени 1/3:
\sqrt[3]{x} =x^{\frac{1}{3}}
То есть, образно говоря, если хотим избавиться от корня, то степень этого корня (квадратный, кубический и т.д.) преобразовывается в дробную степень числа. Тогда, наше число будет иметь вид:
32^{ \frac{1}{5}} =\sqrt[5]{32}
Мы знаем, что два в пятой степени, это 32. Запишем:
\sqrt[5]{32}=\sqrt[5]{2^{5}}
Тогда, согласно предыдущему преобразованию, получим:
\sqrt[5]{2^{5}}=2^{\frac{5}{5}}=2
Возвращаясь к заданию, нам осталось возвести 2 в шестую степень:
2^{6} =2*2*2*2*2*2=4*4*4=16*4=64
4,5(51 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ