В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
a - 2 > 0
(Если a = 2, решений у неравенства нет вовсе, а если a - 2 < 0, то решение - объединение промежутков вида (-infinity, c) и (d, +infinity)).
Итак, первая скобка больше нуля, и на неё можно поделить.
2) Получаем неравенство x^2 - 2(a^2 - 2a) - 7 < 0
Заметим, что график функции y = x^2 + 2px + q - парабола - симметричен относительно прямой x = -p (это вертикальная прямая, проходящая через вершину параболы). Тогда множество решений (если оно не пусто) должно быть симметрично относительно x = -p / 2a. Таким образом, необходимо потребовать, чтобы:
а) у исходного неравенства были корни
б) абсцисса (т.е. х-координата) вершины была равна 3.
3) Проще всего начать со второго условия.
a^2 - 2a = 3
a^2 - 2a - 3 = 0
a1 = 3; a2 = -1
Отметим сразу, что второй корень не удовлетворяет условию a - 2 > 0, так что единственный возможный кандидат на ответ это a = 3.
3) Остается проверить, что при подстановке в неравенство a = 3 множество решений окажется непустым.
x^2 - 2(9 - 6)x - 7 < 0
x^2 - 6x - 7 < 0 - множество решений непусто, а именно -1 < x < 7 (или, переписав в другом виде, 3 - 4 < x < 3 + 4)
ответ. a = 3; b = 4.