1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.
Из следует:
а) , отсюда
- нуль функции
б) ,
, отсюда
,
- нули функции
Итак, функция обращается в нуль в точках
,
и
2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции :
-----(1)
Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:
, отсюда найдем корни:
---------(2)
Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции принимает положительные и отрицательные значения:
а) при x принадлежащем объединению промежутков
(-бесконечности; 1/3)U(5; +бесконечности )
б) при x принадлежащем промежутку (1/3; 5)
Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!
На промежутках, где , функция убывает!
Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума
Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,
1) Пусть х+2 - боковая сторона(т.к. треугольник равнобедренный, то боковые стороны равны, а значит обозначение для второй стороны не требуется), тогда основание х. Составим уравнение:
х+2+х+2+х=34
3х+4=34
3х=34-4
3х=30
х=10 (см)- основание треугольника
значит 10+2=12 (см) каждая из боковых сторон.
ответ:12 см,12 см,10 см.
2)Т.к. треугольник равнобедренный, то АВ=ВС.По свойству медианы равнобедренного треугольника ВМ это биссектриса и высота, следовательно если ВМ биссектриса, то углы АВМ и СВМ равны между собой.Для тругольников АВМ и СВМ ВМ-это общая сторона следовательно треугольник АВМ=треугольнику СВМ(по 2-ум сторонам и углу между ними) т.к. ВМ-общая сторона, АВ=ВС,а углы АВМ и СВМ равны. ч. и т.д.