В решении.
Объяснение:
Решить систему уравнений:
1) х - у = 1
х + у = 3
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 1 + у
1 + у + у = 3
2у = 3-1
2у = 2
у = 1;
х = 1 + у
х = 1+1
х = 2.
Решение системы уравнений (2; 1).
2) х - 2у = 1
2х + у = 2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 1 + 2у
2(1 + 2у) + у = 2
2 + 4у + у = 2
5у = 2 - 2
5у = 0
у = 0;
х = 1 + 2у
х = 1.
Решение системы уравнений (1; 0).
Проверка путём подстановки вычисленных значений х и у в системы уравнений показала, что данные решения удовлетворяют данным системам уравнений.
Відповідь:
Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.
Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.
Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,
8 + 9 + 2, мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:
8 + 2 + 9 = 10 + 9 = 19.
x -2 -1 0 1 2
y -1 1 3 4 7
Нужно нанести данные точки на координатную плоскость. Через все из них, кроме одной будет проходить прямая. Эта точка и будет ответом.