М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Laly009
Laly009
09.07.2020 00:29 •  Алгебра

81 в квадрате-2•81•19+19в квадрате 81-19в квадрате ( это дробь)

👇
Ответ:
alusik2005
alusik2005
09.07.2020
\frac{ 81^{2} -2*81*19+ 19^{2} }{ (81-19)^{2} } = \frac{ (81-19)^{2} }{ (81-19)^{2} } =1
4,6(82 оценок)
Открыть все ответы
Ответ:
dilfuza2105
dilfuza2105
09.07.2020
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
4,6(89 оценок)
Ответ:

Примем за 1 - объем цистерны

Пусть t цис./ч - производительность "медленного" насоса.

Тогда 3t цис./ч - производительность "быстрого" насоса.

(t+3t) цис./ч - производительность системы при совместной работе этих двух насосов.

(t+3t)\cdot \frac{9}{4} - объем работы системы из двух насосов за 2ч 15мин.

Получим уравнение: (t+3t)\cdot \frac{9}{4}=1

9t = 1

t=\frac{1}{9}

Значит, \frac{1}{9} - цис./ч - производительность "медленного" насоса.

Тогда 3t=3\cdot \frac{1}{9}=\frac{1}{3} - цис./ч - производительность "быстрого" насоса.

Следовательно, 1:\frac{1}{3} =3 ч - потребуется "быстрому" насосу на заполнение цистерны.

ответ: 3 ч.


Цистерна наполняется керосином за 2ч 15мин двумя насосами работающих вместе. за сколько времени цист
4,8(30 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ