М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GoogliCC
GoogliCC
20.02.2020 08:34 •  Алгебра

Втреугольнике авс угол а на 30 градусов больше угла в, а угол с в 2 раза меньше угла а. вычилсите величины углов треугольника авс.

👇
Ответ:
dashapendus2003
dashapendus2003
20.02.2020
Пусть A-x+30 B-x C- x/2
x+x+30+x/2=180
4x+60+x=360(привёл к общему знаменателю и тд)
5x+60=360
5x=300
x=60
A=90
B=60
C=60/2=30
4,8(65 оценок)
Ответ:
Магриф
Магриф
20.02.2020
Пусть угол А=х, тогда угол В=(х-30), а угол С=х/2, составим уравнение:
х+(х-30)+х/2=180градусов;
2х+2х-60+х=360гр;
5х=420;
х=84
угол А=84, В=84-30=54, С=42
4,5(69 оценок)
Открыть все ответы
Ответ:
alena230886
alena230886
20.02.2020

Объяснение:

Как я понял, устройства все одинаковые.

С вероятностью p1= 1/2 они дают 0, с p2=1/3 дают 1 В, и с p3=1/6 дают 3 В.

А) Сумма 2 выходов означает, что одно устройство выдаст U1, а другое U2.

Вероятность, что произойдет именно два таких выхода одновременно, равна произведению вероятностей каждого из выходов.

0+0=0: p1*p1=1/2*1/2=1/4

0+1=1: p1*p2=1/2*1/3=1/6

0+3=3: p1*p3=1/2*1/6=1/12

1+0=1: p2*p1=1/3*1/2=1/6

1+1=2: p2*p2=1/3*1/3=1/9

1+3=4: p2*p3=1/3*1/6=1/18

3+0=3: p3*p1=1/6*1/2=1/12

3+1=4: p3*p2=1/6*1/3=1/18

3+3=6: p3*p3=1/6*1/6=1/36

Для проверки сложим все эти вероятности, сумма должна быть 1.

1/4+1/6+1/12+1/6+1/9+1/18+1/12+1/18+1/36 =

= 9/36+6/36+3/36+6/36+4/36+2/36+3/36+2/36+1/36 =

= (9+6+3+6+4+2+3+2+1)/36 = 36/36 = 1

Все правильно.

Б) Результат в 1 В может получиться двумя :

1 = 0+1 = 1+0

Вероятности одинаковые, 1/6 и 1/6.

Поэтому суммарная вероятность равна

P(1) = 1/6+1/6 = 1/3

Из 360 испытаний получится примерно 360/3 = 120 испытаний с таким результатом.

ответ: 120

4,6(13 оценок)
Ответ:
irakeksik
irakeksik
20.02.2020
Разложение левой части уравнения на множители.

Решим уравнение

х2 + 10х - 24 = 0.

Разложим левую часть на множители:

х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х Метод выделения полного квадрата.

Решим уравнение х2 + 6х - 7 = 0.

Выделим в левой части полный квадрат.

Для этого запишем выражение х2 + 6х в следующем виде:

 

х2 + 6х = х2 + 2• х • 3.

В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как

х2 + 2• х • 3 + 32 = (х + 3)2.

Преобразуем теперь левую часть уравнения

х2 + 6х - 7 = 0,

прибавляя к ней и вычитая 32. Имеем:

х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.

Таким образом, данное уравнение можно записать так:

(х + 3)2 - 16 =0, (х + 3)2 = 16.

Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,

(2ax + b)2 = b2 - 4ac,

2ax + b = ± √ b2 - 4ac,

2ax = - b ± √ b2 - 4ac,

Примеры.

а) Решим уравнение: 4х2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,

D > 0, два разных корня;

 

Таким образом, в случае положительного дискриминанта, т.е. при

b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.

 

б) Решим уравнение: 4х2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение

ах2 + bх + с = 0 имеет единственный корень,

 

в) Решим уравнение: 2х2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,

уравнение ах2 + bх + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

 

х2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x1 x2 = q,

x1 +x2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.

Например,

x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;

x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Например,

x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;

x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.

Объяснение:

Прочитай это, потом поймёшь.

4,7(85 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ