1) умножим второе на -2 и сложим с первым
3х²-2у²=1
-4х²+2у²=-2
-х²+-1, х²=1; х=±1, если х=1, то у²=2-1; у=±1. получаем два решения.
(1;1);(1;-1);
если х=-1, то у²=2-1; у=±1. получаем еще два решения.
(-1;1);(-1;-1)
ответ (1;1);(1;-1);(-1;1);(-1;-1).
2)
умножим первое на минус два и сложим со вторым, получим
-2х²+6у²+2у=12
2х²-3у²=-4
3у²+2у=8; 3у²+2у-8=0; у=(-1±√(1+24)/3=(-1±5)/3; у=-2; у=4/3=1 1/3;
Если у=-2, то х²=(-4+3*4)/2=4 и , откуда х=±2, решения (-2;-2); (2;-2)
Если у=4/3, то х²=(-4+3*16/9)/2=2/3; х=±√(2/3) и решение (√(2/3); 1 1/3;)
(-√(2/3); 1 1/3)
ответ (-2;-2); (2;-2); (√(2/3); 1 1/3); (-√(2/3); 1 1/3)
В таблицах.
Объяснение:
Постройте графики функций.
1) у=√2х
2) у=(х-2)²-3
Первый график - половина параболы у=х², лежащей на "боку", с началом в точке (0; 0), ветвь направлена вправо.
Второй график - парабола со смещённым центром вниз на 3 единицы и вправо на 2.
Таблицы:
у=√2х у=(х-2)²-3
х 0 2 8 х -1 0 1 2 3 4 5 6
у 0 2 4 у 6 1 -2 -3 -2 1 6 13