М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Аленушка54545454
Аленушка54545454
21.04.2022 02:25 •  Алгебра

Надо! буду безумно ! два 1) будем называть число зеркальным, если оно справа на лево читается так же, как слева на право. например числа 181 и 3003 зеркальные. а)напишите наименьшее пятизначное зеркальное число, которое делится на 5. б) существует ли пятизначное число, которое делится на 45. 2) 12 девочке и 15 мальчиков играют на школьном дворе. из них 3 девочки и 4 мальчика играют в ., а все остальные играют в футбол. все их портфели лежат у крыльца школы. директор поднял один портфель. оказалось, что это портфель футболиста. с какой вероятностью это портфель девочки. ответы: 1) 50005,да,например,54045( как объяснить то, что такой ответ) 2) 0,45(как прийти к такому ответу? ) , , подробное решение

👇
Ответ:
dreamsk831
dreamsk831
21.04.2022
1) зеркальное 5-значное число в общем виде выглядит так хусух.
чтобы число делилось на 5 нужно чтобы оно оканчивалось на 0 или 5. если наше число будет оканчиваться на 0, то и первая цифра должна будет равна 0, но тогда число станет 4-значным, т.е число оканчивается на 5, значит и 1-я цифра будет 5
5усу5.
т.к. мы ищем наименьшее число, то нужно подставить на места неизвестных цифр  наименьшие, а таковым является 0.
т.е. получим число 50005
2) 12+15=27 - всего детей играет во дворе
3+4=7 - играют в вышибалу
27-7=20 - всего играют в футбол
12-3=9 - девочек играют в футбол
9/20=0,45 - вероятность того, что портфель принадлежит девочке, играющей в футбол
4,7(93 оценок)
Открыть все ответы
Ответ:
BC122
BC122
21.04.2022
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(24 оценок)
Ответ:
ROMMIT2
ROMMIT2
21.04.2022

                       35056485

Числа x₁ и x₂ корни уравнения x²- (2a-3)x+a²-3=0. При каких значениях параметра a выполняются равенство   2(x₁ + x₂) = x₁* x₂

* * * 2(x1 + x2) = x1,x2?​​  * * *

решение:     x² -  (2a - 3)x + a² - 3 = 0

D =(2a - 3)² -4(a² - 3) = 4a² - 12a + 9 - 4a² +12 =21  -12a =3(7 -4a)

Уравнение имеет решение , если D ≥ 0 ⇔ 3(7 -4a)   ≥ 0

⇒ 7 - 4a  ≥ 0 ⇔ a ≤ 7/4           a ∈ ( -∞ ; 1 ,75 ]

- - - - - - -  

2(x₁ + x₂) = x₁* x₂      по теореме   BИЕТА

2(2a-3)  = a²- 3 ⇔  a² - 4a+3 =0  ⇒ a₁ = 1 ,  a₂ =3_посторонний корень.  

При a  = 3  квадратное уравнение  не имеет  решения

1 ∈  ( -∞ ; 1 ,75 ]  ,   но  3  ∉  ( -∞ ; 1 ,75 ]  

* * *  при a = 3 :  x²- 3x + 6 =0     D =3² -4*6 = -15 < 0  * * *

ответ :   1  .  

* * * a² - 4a+3 =a² - a  - 3a +3 =a(a-1) - 3(a-1)  =(a-1)(a-3)

* * *  a² - 4a+3  =(a - 2)² - 1 = (a - 2 + 1) (a-2 -1) =  (a - 1) (a-3)

* * *  a₁ ,₂  = 2  ± √(4 -3) = 2 ±1

4,6(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ